Advertisements
Advertisements
प्रश्न
Find the value of : ( 987 )2 - (13)2
उत्तर
( 987 )2 - (13)2
= ( 987 + 13 )( 987 - 13)
= 1000 x 974
= 974000
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
14pq, 28p2q2
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
ax + bx − ay − by
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
16m − 4m2
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : `x^2 + 1/x^2 - 3`
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : (ax + by)2 + (bx - ay)2
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
x4 + y4 - 6x2y2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y