Advertisements
Advertisements
Question
Find the value of : ( 987 )2 - (13)2
Solution
( 987 )2 - (13)2
= ( 987 + 13 )( 987 - 13)
= 1000 x 974
= 974000
APPEARS IN
RELATED QUESTIONS
Factorise the following expression:
7x − 42
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
x2 + xy + 8x + 8y
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : a3 - a2 +a
Factorise : 4a2 - 8ab
Factorise : 2x3b2 - 4x5b4
Factorise : a3b - a2b2 - b3
Factorise : 17a6b8 - 34a4b6 + 51a2b4
factorise : 35a3b2c + 42ab2c2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise the following by taking out the common factor
18xy – 12yz