Advertisements
Advertisements
Question
Factorise:
`x^4 + y^4 - 27x^2y^2`
Solution
`x^4 + y^4 - 27x^2y^2`
= `(x^2)^2 + (y^2)^2 - 2x^2y^2 - 25x^2y^2`
= `(x^2 - y^2)^2 - 25x^2y^2`
= `( x^2 - y^2 )^2 - (5xy)^2` ...[∵ a2 - b2 = (a + b)(a - b)]
= `[ (x^2 - y^2 ) + 5xy ][( x^2 - y^2 ) - 5xy]`
= `[ x^2 + 5xy - y^2 ][ x^2 - 5xy - y^2 ]`
APPEARS IN
RELATED QUESTIONS
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
6p − 12q
Factorise the following expression:
5x2y − 15xy2
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
ax2y + bxy2 + cxyz
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : ( 987 )2 - (13)2
Factorise : 15x + 5
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : a2 - ab - 3a + 3b
Factorise : a2 - ab(1 - b) - b3
factorise : (ax + by)2 + (bx - ay)2
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`