Advertisements
Advertisements
प्रश्न
Factorise:
`x^4 + y^4 - 27x^2y^2`
उत्तर
`x^4 + y^4 - 27x^2y^2`
= `(x^2)^2 + (y^2)^2 - 2x^2y^2 - 25x^2y^2`
= `(x^2 - y^2)^2 - 25x^2y^2`
= `( x^2 - y^2 )^2 - (5xy)^2` ...[∵ a2 - b2 = (a + b)(a - b)]
= `[ (x^2 - y^2 ) + 5xy ][( x^2 - y^2 ) - 5xy]`
= `[ x^2 + 5xy - y^2 ][ x^2 - 5xy - y^2 ]`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Factorise the following expression:
7x − 42
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
x2 + xy + 8x + 8y
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
x2yz + xy2z + xyz2
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 2√3x2 + x - 5√3
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 2x3b2 - 4x5b4
Factorise : (x + y)(a + b) + (x - y)(a + b)
factorise : 35a3b2c + 42ab2c2
factorise : m - 1 - (m-1)2 + am - a
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`