Advertisements
Advertisements
प्रश्न
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
उत्तर
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
= `(4"a"^2 + 1/(4"a"^2) - 2) - (6"a" - 3/(2"a"))`
= `(2"a" - 1/(2"a"))^2 - 3(2"a" - 1/(2"a"))`
= `(2"a" - 1/(2"a")) (2"a" - 1/(2"a") - 3)`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
14pq, 28p2q2
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise the following expression:
6p − 12q
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorize the following:
5x − 15x2
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorize the following:
x4y2 − x2y4 − x4y4
Factorize the following:
ax2y + bxy2 + cxyz
Factorise : a - b - 4a2 + 4b2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Find the value of : ( 987 )2 - (13)2
Factorise : 15x + 5
Factorise : a3 - a2 +a
Factorise : 3x2 + 6x3
Factorise : 15x4y3 - 20x3y
factorise : 35a3b2c + 42ab2c2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
Factorise:
`"p"^2 + (1)/"p"^2 - 3`