Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
5a(x2 - y2) + 35b(x2 - y2)
उत्तर
5a(x2 - y2) + 35b(x2 - y2)
Here, the common factor is 5(x2 - y2).
Dividing throughout by 5(x2 - y2). we get
`(5"a"(x^2 - y^2))/(5(x^2 - y^2)) + (35"b"(x^2 - y^2))/(5(x^2 - y^2)`
= a + 7b
∴ 5a(x2 - y2) + 35b(x2 - y2)
= 5(x2 - y2)(a + 7b).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
14pq, 28p2q2
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : a - b - 4a2 + 4b2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : ( 67.8 )2 - ( 32.2 )2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 4a2 - 8ab
Factorise : 2x3b2 - 4x5b4
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
factorise : ab(x2 + y2) - xy (a2 + b2)
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
`"p"^2 + (1)/"p"^2 - 3`
Factorise the following by taking out the common factor
18xy – 12yz