Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
4x2y3 - 6x3y2 - 12xy2
उत्तर
4x2y3 - 6x3y2 - 12xy2
Here, the common factor is 2xy2.
Dividing throughout by 2xy2, we get
`(4x^2y^3)/(2xy^2) - (6x^3y^2)/(2xy^2) - (12xy^2)/(2xy^2)`
= 2xy - 3x2 - 6
∴ 4x2y2 - 6x3y2 - 12xy2
= 2xy2[2xy - 3x2 - 6].
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
14pq, 28p2q2
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
−16z + 20z3
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
9x2y + 3axy
Factorize the following:
x2yz + xy2z + xyz2
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise : a - b - 4a2 + 4b2
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : 3x2 + 6x3
Factorise : 6x2y + 9xy2 + 4y3
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 2b (2a + b) - 3c (2a + b)
factorise : a2 - ab - 3a + 3b
factorise : m - 1 - (m-1)2 + am - a
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
24m4n6 + 56m6n4 - 72m2n2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
4x4 + 25y4 + 19x2y2
Factorise:
`"p"^2 + (1)/"p"^2 - 3`