Advertisements
Advertisements
प्रश्न
Factorise:
4x4 + 25y4 + 19x2y2
उत्तर
4x4 + 25y4 + 19x2y2
= 4x4 + 25y4 + 20x2y2 - x2y2
= (2x2)2 + (5y2)2 + 2 x (2x2) x (5y2) - x2y2
= [(2x2)2 + (5y2) + 2 x (2x2) x (5y2)] -x2y2
= [2x2 + 5y2] - (xy)2
= (2x2 + 5y2 - xy)(2x2 - 5y + xy).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Find the common factors of the terms.
10pq, 20qr, 30rp
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
a4b − 3a2b2 − 6ab3
Factorize the following:
16m − 4m2
Factorize the following:
ax2y + bxy2 + cxyz
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : a3 - a2 +a
Factorise : a3b - a2b2 - b3
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : 6x3 - 8x2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
Factorise : a2 - ab(1 - b) - b3
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise: x4 - 5x2 - 36
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y