Advertisements
Advertisements
प्रश्न
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
उत्तर
`1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
=`1/4 [ ( a + b )^2 - 9/4( 2a - b )^2 ]`
=`1/4 [ ( a + b )^2 - [3/2( 2a - b )^2] ]`
=`1/4 [( a + b + 3/2(2a - b))( a + b - 3/2( 2a - b ))]`
=`1/4[( a + b + 3a - (3b)/2)( a + b - 3a + (3b)/2 )]`
= `1/4[( 4a - b/2 )( (5b)/2 - 2a )]`
= `1/4[(( 8a - b )/2)([ 5b - 4a ]/2)]`
= `1/4[ 1/4( 8a - b )( 5b - 4a )]`
= `1/16 ( 8a - b )( 5b - 4a )`
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
− 4a2 + 4ab − 4 ca
Factorise.
15pq + 15 + 9q + 25p
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
x2yz + xy2z + xyz2
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : 4x4 + 9y4 + 11x2y2
Factorise : a - b - 4a2 + 4b2
Factorise : (a2 - a) (4a2 - 4a - 5) - 6
Factorise : x4 + y4 - 3x2y2
Find the value of : ( 987 )2 - (13)2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 6x3 - 8x2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)