मराठी

Factorise : (a2 - 3a) (a2 - 3a + 7) + 10 - Mathematics

Advertisements
Advertisements

प्रश्न

Factorise : (a2 - 3a) (a2 - 3a + 7) + 10

बेरीज

उत्तर

(a2 - 3a) (a2 - 3a + 7) + 10

Let us assume , a2 - 3a = x
Then, our polynomial becomes,
( a2 - 3a )( a2 - 3a + 7 ) + 10
= x( x + 7 ) + 10
= x2 + 7x + 10
= x2 + 5x + 2x + 10
= x( x + 5 ) + 2 ( x + 5 )
= ( x + 5 )( x + 2 )

By resubstituting the value of x,
= (a2 - 3a + 5)( a2 - 3a + 2 )

Now, a2 - 3a + 5 will have no factor as discriminant is -11 that is less than 0.

And,

∴ a2 - 3a + 2 = a2 - 2a - a + 2 = a( a - 2) - 1(a - 2) = (a - 1)(a - 2)

So, factor of given polynomial are,

a2 - 3a + 2 = a2 - 2a - a + 2

= (a2 - 3a + 5)(a - 1)(a - 2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Factorisation - Exercise 5 (E) [पृष्ठ ७६]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 5 Factorisation
Exercise 5 (E) | Q 9 | पृष्ठ ७६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×