Advertisements
Advertisements
प्रश्न
Factorise : 3 - 5x + 5y - 12(x - y)2
उत्तर
3 - 5x + 5y - 12(x - y)2 = 3 - 5( x - y ) - 12(x - y)2
Let us assume that x - y = a
Then the given expression is
3 - 5x + 5y - 12(x - y)2
= 3 - 5a - 12a2
= 3 - 9a + 4a - 12a2
= 3( 1 - 3a ) + 4a( 1 - 3a )
= ( 3 + 4a )( 1 - 3a ) [ resubstitute the value of a ]
= [ 3 + 4( x - y )][ 1 - 3( x - y )]
= ( 3 + 4x - 4y )( 1 - 3x + 3y )
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7x − 42
Factorise the following expression:
20 l2m + 30 alm
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
5x − 15x2
Factorize the following:
16m − 4m2
Factorize the following:
ax2y + bxy2 + cxyz
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : x4 + y4 - 3x2y2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 2√3x2 + x - 5√3
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : x2y - xy2 + 5x - 5y
Factorise: a4 - 625
Factorise the following by taking out the common factors:
36(x + y)3 - 54(x + y)2
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
4x4 + 25y4 + 19x2y2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y