Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
81(p + q)2 -9p - 9q
उत्तर
81(p + q)2 -9p - 9q
= 81(p + q)2 - 9(p + q)
Here, the common factor is 9(p + q)
Dividing throughout by 9(p + q), we get
`(81("p" + "q")^2)/(9("p" + "q")) - (9("p" + "q"))/(9("p" + "q")`
= 9(p + q) - 1
∴ 81(p + q)2 - 9p - 9q
= 9(p + q)[9(p + q) - 1].
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
ax + bx − ay − by
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
2l2mn - 3lm2n + 4lmn2
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : ( 987 )2 - (13)2
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x + 5
Factorise : 4a2 - 8ab
Factorise : 15x4y3 - 20x3y
Factorise : 6x2y + 9xy2 + 4y3
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : 6x3 - 8x2
factorise : 35a3b2c + 42ab2c2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : a2 - ab - 3a + 3b
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
x4 + y4 - 6x2y2
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y