Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
81(p + q)2 -9p - 9q
उत्तर
81(p + q)2 -9p - 9q
= 81(p + q)2 - 9(p + q)
Here, the common factor is 9(p + q)
Dividing throughout by 9(p + q), we get
`(81("p" + "q")^2)/(9("p" + "q")) - (9("p" + "q"))/(9("p" + "q")`
= 9(p + q) - 1
∴ 81(p + q)2 - 9p - 9q
= 9(p + q)[9(p + q) - 1].
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
12x, 36
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
20 l2m + 30 alm
Factorise.
15pq + 15 + 9q + 25p
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
−4a2 + 4ab − 4ca
Factorize the following:
x2yz + xy2z + xyz2
Factorise : `(9a)^2 + 1/(9a)^2 - 2 - 12a + 4/(3a)`
Factorise:
`x^4 + y^4 - 27x^2y^2`
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Find the value of : `[(6.7)^2 - (3.3)^2]/[6.7 - 3.3]`
Factorise : 15x + 5
Factorise : 2x3b2 - 4x5b4
Factorise : 15x4y3 - 20x3y
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise : (x + y)(a + b) + (x - y)(a + b)
Factorise : 2b (2a + b) - 3c (2a + b)
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise : (a+ 2b) (3a + b) - (a+ b) (a+ 2b) +(a+ 2b)2
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
4x4 + 25y4 + 19x2y2
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y