Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
2x5y + 8x3y2 - 12x2y3
उत्तर
2x5y + 8x3y2 - 12x2y3
Here, the common factor is 2x2y.
Dividing throughout by 2x2y, we get
`(2x^5y)/(2x^2y) + (8X^3y^2)/(2x^2y) - (12x^2y^3)/(2x^2y)`
= x3 + 4xy - 6y2
∴ 2x5y + 8x3y2 - 12x2y3
= 2x2y(x3 + 4xy - 6y2).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
14pq, 28p2q2
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
16x3, −4x2, 32x
Find the common factors of the terms.
3x2y3, 10x3y2, 6x2y2z
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
ax + bx − ay − by
Factorize the following:
3x − 9
Factorize the following:
72x6y7 − 96x7y6
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorise by taking out the common factors :
2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : a - b - 4a2 + 4b2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise:
5a2 - b2 - 4ab + 7a - 7b
Factorise : 3 - 5x + 5y - 12(x - y)2
Find the value of : ( 67.8 )2 - ( 32.2 )2
Factorise : 15x + 5
Factorise : a3 - a2 +a
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 4x(3x - 2y) - 2y(3x - 2y)
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise : ab(x2 + y2) - xy (a2 + b2)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
5x2 - y2 - 4xy + 3x - 3y