Advertisements
Advertisements
प्रश्न
Factorise the following by taking out the common factors:
(mx + ny)2 + (nx - my)2
उत्तर
(mx + ny)2 + (nx - my)2
= m2x2 + n2y2 + 2mnxy + n2x2 + m2y2 - 2mnxy
= m2x2 + n2y2 + n2x2 + m2y2
= m2x2 + n2x2 + m2y2 + n2y2
= x2(m2 + n2) + y2(m2 + n2)
Here, the common factor is (m2 + n2).
Dividing throughout by (m2 + n2), we get
`(x^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)) + (y^2("m"^2 + "n"^2))/(("m"^2 + "n"^2)`
= x2 + y2
∴ (mx + ny)2 + (nx - my)2
= (m2 + n2)(x2 + y2).
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2x, 3x2, 4
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7a2 + 14a
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
5x2y − 15xy2
Factorise the following expression:
ax2y + bxy2 + cxyz
Factorise.
ax + bx − ay − by
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
9x2y + 3axy
Factorize the following:
ax2y + bxy2 + cxyz
Factorise : 4(2x - 3y)2 - 8x+12y - 3
Factorise : 3 - 5x + 5y - 12(x - y)2
Factorise : 2√3x2 + x - 5√3
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Factorise : 17a6b8 - 34a4b6 + 51a2b4
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise: 6xy(a2 + b2) + 8yz(a2 + b2) −10xz(a2 + b2)
factorise : 8(2a + 3b)3 - 12(2a + 3b)2
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
Factorise: a4 - 625
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y