Advertisements
Advertisements
प्रश्न
factorise:
9a (x − 2y)4 − 12a (x − 2y)3
उत्तर
9a (x − 2y)4 − 12a (x − 2y)3
The common factors between the terms are:
- a,
- (x − 2y)3, (the lower power of (x−2y),
- And the coefficients 9 and 12 have a common factor of 3.
Factor out 3a(x − 2y)3:
9a(x − 2y)4 − 12a(x − 2y)3 = 3a(x − 2y)3 (3(x − 2y) −4)
Simplify 3(x − 2y) −4:
3(x − 2y) −4 = 3x − 6y − 4
Thus, the expression becomes:
3a(x − 2y)3 (3x − 6y − 4)
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
6p − 12q
Factorise the following expression:
−16z + 20z3
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
15xy − 6x + 5y − 2
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
x4y2 − x2y4 − x4y4
Factories by taking out common factors :
ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : a3b - a2b2 - b3
Factorise : x2(a-b)-y2 (a-b)+z2(a-b)
Factorise: 36x2y2 - 30x3y3 + 48x3y2
Factorise : a2 - ab(1 - b) - b3
factorise : xy2 + (x - 1) y - 1
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
2a(p2 + q2) + 4b(p2 + q2)
Factorise the following by taking out the common factor
18xy – 12yz