Advertisements
Advertisements
प्रश्न
Factorise : `x^2 + 1/x^2 - 3`
उत्तर
`x^2 + 1/x^2 - 3 `
= `x^2 + 1/x^2 - 2 xx x xx 1/x - 1`
= `( x - 1/x )^2 - 1`
= `( x - 1/x )^2 - (1)^2`
= `( x - 1/x - 1 )( x - 1/x + 1 )` [ ∵ a2 - b2 = ( a + b )( a - b )]
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
6 abc, 24ab2, 12a2b
Factorise the following expression:
7x − 42
Factorise the following expression:
6p − 12q
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
ax + bx − ay − by
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
2x3y2 − 4x2y3 + 8xy4
Factorize the following:
28a2 + 14a2b2 − 21a4
Factorize the following:
x2yz + xy2z + xyz2
Factories by taking out common factors :
xy(3x2 - 2y2) - yz(2y2 - 3x2) + zx(15x2 - 10y2)
Factorise : a - b - 4a2 + 4b2
Factorise : (a2 - 3a) (a2 - 3a + 7) + 10
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 2(ab + cd) - a2 - b2 + c2 + d2
Find the value of : `[(18.5)^2 - (6.5)^2]/[18.5 + 6.5]`
Factorise : a3 - a2 +a
Factorise : 3x2 + 6x3
Factorise : a3b - a2b2 - b3
Factorise : 6x2y + 9xy2 + 4y3
factorise : 6x3 - 8x2
factorise : xy2 + (x - 1) y - 1
factorise : m - 1 - (m-1)2 + am - a
Factorise xy2 - xz2, Hence, find the value of :
9 x 82 - 9 x 22
Factorise the following by taking out the common factors:
p(p2 + q2 - r2) + q(r2 - q2 -p2) - r(p2 + q2 - r2)
Factorise:
`y^2 + (1)/(4y^2) + 1 - 6y - (3)/y`
Factorise:
5x2 - y2 - 4xy + 3x - 3y
Factorise the following by taking out the common factor
9x5y3 + 6x3y2 – 18x2y