Advertisements
Advertisements
प्रश्न
Factorise:
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
उत्तर
`x^2 + 1/(4x^2) + 1 - 7x - 7/(2x)`
= `(x)^2 + 1/(2x)^2 + 2 xx x xx 1/(2x) - 7( x + 1/(2x))`
= `( x + 1/(2x))^2 - 7( x + 1/(2x))`
= `( x + 1/(2x))( x + 1/(2x) - 7)`
= `( x + 1/(2x))( x - 7 + 1/(2x))`
APPEARS IN
संबंधित प्रश्न
Factorise the following expression:
7x − 42
Factorise the following expression:
10a2 − 15b2 + 20c2
Factorise the following expression:
x2yz + xy2z + xyz2
Factorise.
x2 + xy + 8x + 8y
Factorise.
z − 7 + 7xy − xyz
Factorize the following:
5x − 15x2
Factorize the following:
20a12b2 − 15a8b4
Factorize the following:
20x3 − 40x2 + 80x
Factorize the following:
10m3n2 + 15m4n − 20m2n3
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Factorize the following:
a4b − 3a2b2 − 6ab3
Factories by taking out common factors :
2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
Factorise : `x^2 + [a^2 + 1]/a x + 1`
Factorise : `x^2 + 1/x^2 - 3`
Factorise : a - b - 4a2 + 4b2
Factorise:
(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2
Factorise : 9x 2 + 3x - 8y - 64y2
Find the value of : ( 987 )2 - (13)2
Find the value of : ( 67.8 )2 - ( 32.2 )2
Factorise : 15x + 5
Factorise : 3x5y - 27x4y2 + 12x3y3
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
factorise : 35a3b2c + 42ab2c2
factorise : (ax + by)2 + (bx - ay)2
Factorise xy2 - xz2, Hence, find the value of :
40 x 5.52 - 40 x 4.52
Factorise the following by taking out the common factors:
12a3 + 15a2b - 21ab2
Factorise:
`4"a"^2 + (1)/(4"a"^2) - 2 - 6"a" + (3)/(2"a")`
Factorise:
4x4 + 25y4 + 19x2y2