English

Factorise: x3 + 13x2 + 32x + 20 - Mathematics

Advertisements
Advertisements

Question

Factorise:

x3 + 13x2 + 32x + 20

Sum

Solution

Let p(x) = x3 + 13x2 + 32x + 20

All the factors of 20 have to be considered. Some of them are ±1, ± 2, ± 4, ± 5 ……

By trial method,

p(−1) = (−1)3 + 13(−1)2 + 32(−1) + 20

= −1 + 13 − 32 + 20

= 33 − 33

= 0

As p(−1) is zero, therefore, x + 1 is a factor of this polynomial p(x).

Let us find the quotient by dividing x3 + 13x2 + 32x + 20 by (x + 1).

By long division,

             x2 + 12x + 20
`x + 1) overline(x^3 + 13x^2 + 32x + 20)`
             x3 + x2
            −      −
          `overline(                                                            )`
               12x2 + 32x
               12x2 + 12x
                 −      −
         `overline(                                                              )`
                          20x + 20
                          20x + 20
                         −      −
         `overline(                                                             )`
                                 0
         `overline(                                                              )`

It is known that,

Dividend = Divisor × Quotient + Remainder

x3 + 13x2 + 32x + 20

= (x + 1) (x2 + 12x + 20) + 0

= (x + 1) (x2 + 10x + 2x + 20)

= (x + 1) [x (x + 10) + 2 (x + 10)]

= (x + 1) (x + 10) (x + 2)

= (x + 1) (x + 2) (x + 10)

shaalaa.com
Factorisation of Polynomials
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.4 [Page 44]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 2 Polynomials
Exercise 2.4 | Q 5.3 | Page 44
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×