Advertisements
Advertisements
Question
Factorise:
2y3 + y2 – 2y – 1
Solution
Let p(y) = 2y3 + y2 − 2y − 1
By trial method,
p(1) = 2(1)3 + (1)2 − 2(1) − 1
= 2 + 1 − 2 − 1
= 0
Therefore, y − 1 is a factor of this polynomial.
Let us find the quotient by dividing 2y3 + y2 − 2y − 1 by y − 1.
2y2 + 3y + 1
`y − 1) overline(2y^3 + y^2 − 2y − 1)`
2y3 − 2y2
− +
`overline( )`
3y2 − 2y − 1
3y2 − 3y
− +
`overline( )`
y − 1
y − 1
− −
`overline( )`
0
`overline( )`
p(y) = 2y3 + y2 − 2y − 1
= (y − 1) (2y2 + 3y + 1)
= (y − 1) (2y2 + 2y + y + 1)
= (y − 1) [2y (y + 1) + 1 (y + 1)]
= (y − 1) (y + 1) (2y + 1)
APPEARS IN
RELATED QUESTIONS
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = `kx^2 - sqrt2x +1`
Find the Factors of the Polynomial Given Below.
2x2 + x – 1
Find the factor of the polynomial given below.
3y2 – 2y – 1
Factorize the following polynomial.
(x2 – x)2 – 8 (x2 – x) + 12
Factorize the following polynomial.
(y + 2) (y – 3) (y + 8) (y + 3) + 56
Factorize the following polynomial.
(x – 3) (x – 4)2 (x – 5) – 6
x + 1 is a factor of the polynomial ______.
Show that 2x – 3 is a factor of x + 2x3 – 9x2 + 12.
Factorise:
2x2 – 7x – 15
Factorise:
1 + 64x3