Advertisements
Advertisements
प्रश्न
Factorise:
2y3 + y2 – 2y – 1
उत्तर
Let p(y) = 2y3 + y2 − 2y − 1
By trial method,
p(1) = 2(1)3 + (1)2 − 2(1) − 1
= 2 + 1 − 2 − 1
= 0
Therefore, y − 1 is a factor of this polynomial.
Let us find the quotient by dividing 2y3 + y2 − 2y − 1 by y − 1.
2y2 + 3y + 1
`y − 1) overline(2y^3 + y^2 − 2y − 1)`
2y3 − 2y2
− +
`overline( )`
3y2 − 2y − 1
3y2 − 3y
− +
`overline( )`
y − 1
y − 1
− −
`overline( )`
0
`overline( )`
p(y) = 2y3 + y2 − 2y − 1
= (y − 1) (2y2 + 3y + 1)
= (y − 1) (2y2 + 2y + y + 1)
= (y − 1) [2y (y + 1) + 1 (y + 1)]
= (y − 1) (y + 1) (2y + 1)
APPEARS IN
संबंधित प्रश्न
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = x2 + x + k
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = `kx^2 - sqrt2x +1`
Factorise:
2x2 + 7x + 3
Factorise:
x3 – 2x2 – x + 2
Determine the following polynomial has (x + 1) a factor:
x4 + x3 + x2 + x + 1
Determine the following polynomial has (x + 1) a factor:
x4 + 3x3 + 3x2 + x + 1
Find the factor of the polynomial given below.
12x2 + 61x + 77
x + 1 is a factor of the polynomial ______.
One of the factors of (25x2 – 1) + (1 + 5x)2 is ______.
Find the value of m so that 2x – 1 be a factor of 8x4 + 4x3 – 16x2 + 10x + m.