Advertisements
Advertisements
प्रश्न
Factorise:
2y3 + y2 – 2y – 1
उत्तर
Let p(y) = 2y3 + y2 − 2y − 1
By trial method,
p(1) = 2(1)3 + (1)2 − 2(1) − 1
= 2 + 1 − 2 − 1
= 0
Therefore, y − 1 is a factor of this polynomial.
Let us find the quotient by dividing 2y3 + y2 − 2y − 1 by y − 1.
2y2 + 3y + 1
`y − 1) overline(2y^3 + y^2 − 2y − 1)`
2y3 − 2y2
− +
`overline( )`
3y2 − 2y − 1
3y2 − 3y
− +
`overline( )`
y − 1
y − 1
− −
`overline( )`
0
`overline( )`
p(y) = 2y3 + y2 − 2y − 1
= (y − 1) (2y2 + 3y + 1)
= (y − 1) (2y2 + 2y + y + 1)
= (y − 1) [2y (y + 1) + 1 (y + 1)]
= (y − 1) (y + 1) (2y + 1)
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Factorise:
x3 – 2x2 – x + 2
Factorise:
x3 – 3x2 – 9x – 5
Find the Factors of the Polynomial Given Below.
2x2 + x – 1
Factorize the following polynomial.
(x2 – x)2 – 8 (x2 – x) + 12
Factorize the following polynomial.
(x2 – 2x + 3) (x2 – 2x + 5) – 35
Factorize the following polynomial.
(y + 2) (y – 3) (y + 8) (y + 3) + 56
Factorize the following polynomial.
(x – 3) (x – 4)2 (x – 5) – 6
Factorise:
6x2 + 7x – 3
Factorise:
84 – 2r – 2r2