English

Find All the Zeros of the Polynomial X3 + 3x2 − 2x − 6, If Two of Its Zeros Are `-sqrt2` and `Sqrt2` - Mathematics

Advertisements
Advertisements

Question

Find all the zeros of the polynomial x3 + 3x2 − 2x − 6, if two of its zeros are `-sqrt2` and `sqrt2`

Solution

We know that if x = a is a zero of a polynomial, then x - a is a factor of f(x).

Since, `sqrt2` and `-sqrt2` are zeros of f(x).

Therefore

`(x+sqrt2)(x-sqrt2)=x^2-(sqrt2)^2`

= x2 - 2

x2 - 2 is a factor of f(x). Now, we divide x3 + 3x2 − 2x − 6 by g(x) = x2 - 2 to find the zero of f(x).

By using division algorithm we have

f(x) = g(x) x q(x) - r(x)

x3 + 3x2 − 2x − 6 = (x2 - 2)(x + 3) - 0

x3 + 3x2 − 2x − 6 `=(x+sqrt2)(x-sqrt2)(x+3)`

Hence, the zeros of the given polynomials are `-sqrt2`, `+sqrt2` and  -3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.3 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.3 | Q 12 | Page 58

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×