English

Find the Angle Between the Planes. (Iii) X − Y + Z = 5 And X + 2y + Z = 9 - Mathematics

Advertisements
Advertisements

Question

Find the angle between the planes.

 x − y + z = 5 and x + 2y + z = 9

Sum

Solution

` \text{ We know that the angle between the planes }  a_1 x + b_1 y + c_1 z + d_1 = 0 \text{ and } a_2 x + b_2 y + c_2 z + d_2 = 0 \text{ is given by } `
\[\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt{{a_2}^2 + {b_2}^2 + {c_2}^2}}\]
\[ \text{ So, the angle between } x - y + z = 5 \text{ and } x + 2y + z = 9 \text{ is given by } \]
\[\cos \theta = \frac{\left( 1 \right) \left( 1 \right) + \left( - 1 \right) \left( 2 \right) + \left( 1 \right) \left( 1 \right)}{\sqrt{1^2 + \left( - 1 \right)^2 + 1^2} \sqrt{1^2 + 2^2 + 1^2}} = \frac{1 - 2 + 1}{\sqrt{1 + 1 + 1} \sqrt{1 + 4 + 1}} = \frac{0}{\sqrt{3} \sqrt{6}} = 0\]
\[ \Rightarrow \theta = \cos^{- 1} \left( 0 \right) = \frac{\pi}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.06 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.06 | Q 2.3 | Page 29

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the angle between the planes `bar r.(2bar i+barj-bark)=3 and bar r.(hati+2hatj+hatk)=1`


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

 


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x + 8y + z – 8 = 0 and y + z – 4 = 0


Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( - \hat{i}  + \hat{j}  \right) = 4\]

 


Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + 2 \hat{k}  \right) = 6 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + 6 \hat{j}  - 2 \hat{k}  \right) = 9\]


Find the angle between the given planes.
\[\vec{r} \cdot \left( 2 \hat{i} + 3 \hat{j}  - 6 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) = 9\]

 


Find the angle between the planes.

2x − y + z = 4 and x + y + 2z = 3


Find the angle between the planes.

x + y − 2z = 3 and 2x − 2y + z = 5


Find the angle between the planes.
 2x − 3y + 4z = 1 and − x + y = 4


Find the angle between the planes.

 2x + y − 2z = 5 and 3x − 6y − 2z = 7

 

Show that the following planes are at right angles.

\[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( - \hat{i}  - \hat{j} + \hat{k}  \right) = 3\]

 


Show that the following planes are at right angles.

x − 2y + 4z = 10 and 18x + 17y + 4z = 49

 

 


The acute angle between the planes 2x − y + z = 6 and x + y + 2z = 3 is


The acute angle between the two planes x+y+2z = 3 and 3x -2y +2z = 7 ________.


The function `f(x) = log(1 + x) - (2x)/(2 + x)` is increasing on


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×