Advertisements
Advertisements
Question
Find the angle between the planes.
x − y + z = 5 and x + 2y + z = 9
Solution
` \text{ We know that the angle between the planes } a_1 x + b_1 y + c_1 z + d_1 = 0 \text{ and } a_2 x + b_2 y + c_2 z + d_2 = 0 \text{ is given by } `
\[\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt{{a_2}^2 + {b_2}^2 + {c_2}^2}}\]
\[ \text{ So, the angle between } x - y + z = 5 \text{ and } x + 2y + z = 9 \text{ is given by } \]
\[\cos \theta = \frac{\left( 1 \right) \left( 1 \right) + \left( - 1 \right) \left( 2 \right) + \left( 1 \right) \left( 1 \right)}{\sqrt{1^2 + \left( - 1 \right)^2 + 1^2} \sqrt{1^2 + 2^2 + 1^2}} = \frac{1 - 2 + 1}{\sqrt{1 + 1 + 1} \sqrt{1 + 4 + 1}} = \frac{0}{\sqrt{3} \sqrt{6}} = 0\]
\[ \Rightarrow \theta = \cos^{- 1} \left( 0 \right) = \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the angle between the planes `bar r.(2bar i+barj-bark)=3 and bar r.(hati+2hatj+hatk)=1`
In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0
In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
2x + y + 3z – 2 = 0 and x – 2y + 5 = 0
In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0
In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
4x + 8y + z – 8 = 0 and y + z – 4 = 0
Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( - \hat{i} + \hat{j} \right) = 4\]
Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 6 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + 6 \hat{j} - 2 \hat{k} \right) = 9\]
Find the angle between the planes.
2x − y + z = 4 and x + y + 2z = 3
Find the angle between the planes.
x + y − 2z = 3 and 2x − 2y + z = 5
Find the angle between the planes.
2x − 3y + 4z = 1 and − x + y = 4
Find the angle between the planes.
2x + y − 2z = 5 and 3x − 6y − 2z = 7
Show that the following planes are at right angles.
\[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 5 \text{ and } \vec{r} \cdot \left( - \hat{i} - \hat{j} + \hat{k} \right) = 3\]
Show that the following planes are at right angles.
x − 2y + 4z = 10 and 18x + 17y + 4z = 49
The acute angle between the planes 2x − y + z = 6 and x + y + 2z = 3 is
The acute angle between the two planes x+y+2z = 3 and 3x -2y +2z = 7 ________.
The function `f(x) = log(1 + x) - (2x)/(2 + x)` is increasing on