English

Find dydxify=(x+1x)2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`

Sum

Solution

`y = (sqrtx + 1/sqrtx)^2`

∴ y = x + 2 + `1/x`

Differentiating w.r.t. x, we get

`dy/dx=d/dx(x + 2 + 1/x)`

= `d/dx(x) + d/dx (2) + d/dx(1/x)`

= `1+0+d/dx(x^(-1))`

= 1 + (–1) x–2

= `1  –  1/x^2`

shaalaa.com
Rules of Differentiation (Without Proof)
  Is there an error in this question or solution?
Chapter 9: Differentiation - Miscellaneous Exercise 9 [Page 123]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 9 Differentiation
Miscellaneous Exercise 9 | Q II. (3) | Page 123

RELATED QUESTIONS

Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`


Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`


Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`


Find the derivative of the following function by the first principle: 3x2 + 4


Find the derivative of the following function by the first principle: `x sqrtx`


Find the derivative of the following functions by the first principle: `1/(2x + 3)`


Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.


Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.


Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.


Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.


The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.


Differentiate the following function w.r.t.x. : `xsqrt x`


Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`


Find `dy/dx` if y = x2 + 2x – 1


Find `dy/dx` if y = (1 – x) (2 – x)


Find `dy/dx if y=(1+x)/(2+x)`


Find `dy/dx if y = ((logx+1))/x`


The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.


Differentiate the following w.r.t.x :

y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×