Advertisements
Advertisements
Question
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Solution
Let y = `(x"e"^x)/(x + "e"^x)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx((x"e"^x)/(x + "e"^x))`
= `((x + "e"^x)d/dx(x"e"^x) -(x"e"^x)d/dx(x + "e"^x))/(x + "e"^x)^2`
=`((x + "e"^x)[xd/dx("e"^x) + "e"^xd/dx(x)] - x"e"^x(d/dx(x) + d/dx("e"^x)))/(x + "e"^x)^2`
= `((x + "e"^x)[x"e"^x + "e"^x(1)] - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
=`((x + "e"^x)(x"e"^x + "e"^x) - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
= `((x + "e"^x)"e"^x(x + 1) - x"e"^x(1 + "e"^x))/(x + "e"^x)^2`
= `("e"^x[(x + "e"^x)(x + 1) - x(1 + "e"^x)])/(x + "e"^x)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =