Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Solution
y= `"e"^x/("e"^x + 1)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx ("e"^x/("e"^x + 1))`
= `(("e"^x + 1)d/dx("e"^x) - "e"^"x" d/dx("e"^x + 1))/(("e"^x + 1)^2)`
= `(("e"^x + 1)"e"^x - "e"^x("e"^x + 0))/("e"^x + 1)^2`
= `("e"^x("e"^x + 1 - "e"^x))/("e"^x + 1)^2`
= `"e"^x/("e"^x + 1)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : x−2
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =