Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x. : x−2
Solution
Let y = x–2
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x^(-2))`
= `-2x^-3`
= `(-2)/(x^3)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =