Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x. : `x/log x`
Solution
Let y =`x/log x`
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x/logx)`
= `(logxd/dx(x) - xd/dx(logx))/(logx)^2`
= `(logx(1) - x(1/x))/(logx)^2`
= `(logx-1)/(logx)^2`
APPEARS IN
RELATED QUESTIONS
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function .w.r.t.x. : x5
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`