English

Differentiate the following w.r.t.x : y = x43+ex-sinx - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x :

y = `x^(4/3) + "e"^x - sinx`

Sum

Solution

y = `x^(4/3) + "e"^x - sinx`

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(x^(4/3) + "e"^x - sinx)`

∴ `("d"y)/("d"x) = "d"/("d"x) (x^(4/3)) + "d"/("d"x)("e"^x) - "d"/("d"x)(sinx)`

= `4/3x^(4/3 - 1) + "e"^x - cos x`

= `4/3 x^(1/3) + "e"^x - cos x`

shaalaa.com
Rules of Differentiation (Without Proof)
  Is there an error in this question or solution?
Chapter 9: Differentiation - Exercise 9.2 [Page 192]

RELATED QUESTIONS

Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`


Find the derivative of the following w. r. t.x.

`(3x^2 - 5)/(2x^3 - 4)`


Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`


Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`


Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`


Find the derivative of the following function by the first principle: 3x2 + 4


Differentiate the following function w.r.t.x. : `x/(x + 1)`


Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `x/log x`


Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`


If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.


The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.


Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.


Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.


The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.


The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.


Differentiate the following function w.r.t.x. : x−2


Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`


Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`


Find `dy/dx` if y = (1 – x) (2 – x)


Find `dy/dx if y=(1+x)/(2+x)`


Find `dy/dx if y = "e"^x/logx`


The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.


If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.


Differentiate the following w.r.t.x :

y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`


Differentiate the following w.r.t.x :

y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`


Select the correct answer from the given alternative:

If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`


Select the correct answer from the given alternative:

If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×