Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solution
Let y = `((x + 1)(x - 1))/(("e"^x + 1))`
∴ y = `(x^2 - 1)/(("e"^x + 1))`
Differentiating w.r.t. x, we get
`dy/dx=d/dx((x^2 - 1)/("e"^x + 1))`
= `(("e"^x + 1)d/dx(x^2 - 1) - (x^2 - 1)d/dx("e"^x + 1))/("e"^x + 1)^2`
= `(("e"^x + 1)(2x) - (x^2 - 1)("e"^x + 0))/("e"^x + 1)^2`
= `(2x"e"^x + 2x - x^2"e"^x + "e"^x)/("e"^x + 1)^2`
= `(2x"e"^x + "e"^x - x^2"e"^x + 2x)/("e"^x + 1)^2`
= `("e"^x(2x + 1 - x^2) + 2x)/("e"^x + 1)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: 3x2 + 4
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = ((logx+1))/x`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =