Advertisements
Advertisements
Question
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Solution
Let y =`(2"e"^x - 1)/(2"e"^x + 1)`
Differentiating w.r.t. x, we get
`dy/dx=d/dx((2"e"^x - 1)/(2"e"^x + 1))`
= `((2"e"^x + 1)d/dx(2"e"^x - 1) - (2"e"^x - 1)d/dx(2"e"^x + 1))/((2"e"^x + 1)^2)`
= `((2"e"^x + 1)(2"e"^x - 0) - (2"e"^x - 1)(2"e"^x))/((2"e"^x + 1)^2)`
= `((2"e" + 1)(2"e"^x) - (2"e"^x - 1)(2"e"^x))/((2"e"^x - 1))`
= `(2"e"^x(2"e"^x + 1 - 2"e"^x + 1))/((2"e"^x + 1)^2)`
= `(2"e"^x(2))/((2"e"^x + 1)^2`
= `(4"e"^x)/(2"e"^x + 1)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `2^x/logx`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Differentiate the following function .w.r.t.x. : x5
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = "e"^x/logx`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`