Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
उत्तर
Let y =`(2"e"^x - 1)/(2"e"^x + 1)`
Differentiating w.r.t. x, we get
`dy/dx=d/dx((2"e"^x - 1)/(2"e"^x + 1))`
= `((2"e"^x + 1)d/dx(2"e"^x - 1) - (2"e"^x - 1)d/dx(2"e"^x + 1))/((2"e"^x + 1)^2)`
= `((2"e"^x + 1)(2"e"^x - 0) - (2"e"^x - 1)(2"e"^x))/((2"e"^x + 1)^2)`
= `((2"e" + 1)(2"e"^x) - (2"e"^x - 1)(2"e"^x))/((2"e"^x - 1))`
= `(2"e"^x(2"e"^x + 1 - 2"e"^x + 1))/((2"e"^x + 1)^2)`
= `(2"e"^x(2))/((2"e"^x + 1)^2`
= `(4"e"^x)/(2"e"^x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function .w.r.t.x. : x5
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = "e"^x/logx`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =