Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
उत्तर
Let y = `(x^2 +"a"^2)/(x^2 - "a"^2)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx((x^2 + "a"^2)/(x^2 - "a"^2))`
= `((x^2 - "a"^2)d/dx(x^2 + "a"^2) - (x^2 + "a"^2)d/dx(x^2 - "a"^2))/(x^2 - "a"^2)^2`
= `((x^2 - "a"^2)(d/dxx^2 + d/dx "a"^2)-(x^2 + "a"^2)(d/dxx^2 - d/dx "a"^2))/((x^2 - "a"^2)^2)`
= `((x^2 - "a"^2)(2x + 0) - (x^2 + "a"^2)(2x - 0))/((x^2 - "a"^2)^2)`
=`(2x(x^2 - "a"^2) - 2x(x^2 + "a"^2))/((x^2 - "a"^2)^2)`
= `(2x(x^2 - "a"^2 - x^2 - "a"^2))/((x^2 - "a"^2)^2)`
= `(2x(-2"a"^2))/((x^2 - "a"^2)^2)`
=`(-4x"a"^2)/((x^2 - "a"^2)^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: `x sqrtx`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x : `(x^2 + 1)/x`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx` if y = x2 + 2x – 1
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =