Advertisements
Advertisements
प्रश्न
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
उत्तर
Given, D =` ("P"+ 5)/("P" - 1)`
Marginal demand =`("dD")/("dP")= "d"/("dP")(("P"+ 5)/("P" - 1))`
= `(("P" - 1)"d"/("dP")("P"+ 5) - ("P"+ 5)"d"/("dP")("P" - 1))/("P" - 1)^2`
= `(("P" - 1)(1 + 0) - ("P"+ 5)(1 - 0))/("P" - 1)^2`
=`("P" - 1 - "P" - 5)/(("P" - 1)^2`
=`(-6)/(("P" - 1)^2`
When P = 2,
Marginal demand,`(("dP")/("dP"))_("P" = 2) =(-6)/(2 - 1)^2 = -6`
∴ When price is 2, marginal demand is – 6.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =