Advertisements
Advertisements
प्रश्न
Find `dy/dx if y = ((logx+1))/x`
उत्तर
`y=((logx + 1))/x`
Differentiating w.r.t. x, we get
`dy/dx=d/dx[(logx + 1)/x]`
= `(xd/dx(logx + 1) - (logx + 1)d/dx(x))/x^2`
= `(x(1/x + 0) - (logx + 1)(1))/x^2`
= `(1 - logx - 1)/x^2`
=`(-logx)/x^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Differentiate the following function w.r.t.x. : x−2
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx`if y = x log x (x2 + 1)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`