मराठी

Find dydxif y = x log x (x2 + 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `dy/dx`if y = x log x (x2 + 1)

बेरीज

उत्तर

y = x log x (x2 + 1)
Differentiating w.r.t. x, we get

`dy/dx = d/dx(x)(logx)(x^2 + 1)`

= `(x)(logx)d/dx(x^2 + 1) - (x^2 + 1)d/dx((x)(logx))`

= `(xlogx)(2x + 0) + (x^2 + 1)[xd/dx(logx) + (logx)d/dx(x)]`

=`2x^2logx + (x^2 + 1)[x xx 1/x + (logx)(1)]`

= 2x2 log x + (x2 + 1) (1 + log x)
= 2x2 log x + (x2 + 1) + (x2 + 1) log x

shaalaa.com
Rules of Differentiation (Without Proof)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 9 Differentiation
Miscellaneous Exercise 9 | Q II. (10) | पृष्ठ १२३

संबंधित प्रश्‍न

Find the derivative of the following w. r. t.x.

`(3x^2 - 5)/(2x^3 - 4)`


Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`


Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`


Differentiate the following function w.r.t.x : `(x^2 + 1)/x`


Differentiate the following function w.r.t.x. : `x/log x`


Differentiate the following function w.r.t.x. : `2^x/logx`


Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`


If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.


Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.


Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.


The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.


Differentiate the following function w.r.t.x. : `xsqrt x`


Find `dy/dx if y=(sqrtx+1)^2`


Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`


The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.


The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.


Differentiate the following w.r.t.x :

y = `x^(4/3) + "e"^x - sinx`


Differentiate the following w.r.t.x :

y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`


Select the correct answer from the given alternative:

If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×