Advertisements
Advertisements
प्रश्न
Find `dy/dx if y=(sqrtx+1)^2`
उत्तर
`y=(sqrtx+1)^2`
∴ `y = x + 2 sqrtx + 1`
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x+2sqrtx+1)`
=`d/dx(x)+2d/dx(sqrtx)+d/dx(1)`
= `1+2(1/(2sqrtx))+0`
`dy/dx=1+1/sqrtx`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Differentiate the following function w.r.t.x. : `x/log x`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx if y = "e"^x/logx`
Find `dy/dx`if y = x log x (x2 + 1)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =