Advertisements
Advertisements
प्रश्न
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
उत्तर
Given demand D =`64/"P"^3`
Now, marginal demand = `("dD")/("dP")`
=`"d"/("dP")(64/"P"^3)`
= `64"d"/("dP")("P"^-3)`
= 64 (– 3) P– 4
= `(-192)/"P"^4`
When P = 4
Marginal demand =`(("dD")/("dP"))_("P"=4)`
= `(-192)/(4)^4`
= `(-192)/256`
= `(-3)/4`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : x−2
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y=(1+x)/(2+x)`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`