Advertisements
Advertisements
प्रश्न
Find `dy/dx if y=(1+x)/(2+x)`
उत्तर
`y=(1+x)/(2+x)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx ((1+x)/(2+x))`
=`((2 + x)d/dx(1 + x) - (1 + x)d/dx(2 + x))/(2 + x)^2`
=`((2 + x)(0 + 1) - (1 + x)(0 + 1))/(2 + x)^2`
`dy/dx = ((2 + x) - (1 + x))/(2 + x)^2`
=`(2 + x - 1 - x)/(2 + x)^2`
=`1/(2 + x)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx if y = "e"^x/logx`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Differentiate the following w.r.t.x :
y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`