Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
उत्तर
Let y = `(3"e"^x - 2)/(3"e"^x + 2)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx((3"e"^x - 2)/(3"e"^x + 2))`
=`((3"e"^x + 2) d/dx(3"e"^x - 2) - (3"e"^x - 2) d/dx(3"e"^x + 2))/((3"e"^x + 2)^2)`
= `((3"e"^x + 2)(d/dx(3"e"^x) - d/dx(2)) - (3"e"^x - 2)(d/dx(3"e"^x) + d/dx(2)))/((3"e"^x + 2)^2)`
= `((3"e"^x + 2)(3"e"^x - 0) - (3"e"^x - 2)(3"e"^x + 0))/((3"e"^x + 2)^2)`
= `(3"e"^x(3"e"^x + 2) - 3"e"^x(3"e"^x - 2))/((3"e"^x + 2)^2)`
= `(3"e"^x(3"e"^x + 2 - 3"e"^x + 2))/(3"e"^x + 2)^2`
= `(3"e"^x(4))/(3"e"^x + 2)^2`
= `(12"e"^x)/(3"e"^x + 2)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Differentiate the following function w.r.t.x. : x−2
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =