Advertisements
Advertisements
प्रश्न
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
उत्तर
Let f(x) = `1/(2x + 3)`
∴ f(x + h) = `1/(2(x + "h") + 3) = 1/(2x + 2"h"+ 3)`
By first principle, we get
f ‘(x) = `lim_("h" → 0) ("f"(x + "h") - "f"(x))/"h"`
= `lim_("h" → 0) (1/(2x + 2"h"+ 3) - 1/(2x + 3))/"h"`
= `lim_("h" → 0) 1/"h"[(2x + 3 - 2x - 2"h" - 3)/((2x + 2"h" + 3)(2x + 3))]`
=`lim_("h" → 0) 1/"h"[(-2"h")/((2x + 2"h" + 3)(2x + 3))]`
=`lim_("h" → 0)(-2)/((2x + 2"h" + 3)(2x + 3))` …[∵ h → 0, ∴h ≠ 0]
= `(-2)/((2x + 2 xx 0 + 3)(2x + 3))`
= `(-2)/(2x + 3)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : `xsqrt x`
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`