Advertisements
Advertisements
प्रश्न
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
उत्तर
Let f(x) = `1/(2x + 3)`
∴ f(x + h) = `1/(2(x + "h") + 3) = 1/(2x + 2"h"+ 3)`
By first principle, we get
f ‘(x) = `lim_("h" → 0) ("f"(x + "h") - "f"(x))/"h"`
= `lim_("h" → 0) (1/(2x + 2"h"+ 3) - 1/(2x + 3))/"h"`
= `lim_("h" → 0) 1/"h"[(2x + 3 - 2x - 2"h" - 3)/((2x + 2"h" + 3)(2x + 3))]`
=`lim_("h" → 0) 1/"h"[(-2"h")/((2x + 2"h" + 3)(2x + 3))]`
=`lim_("h" → 0)(-2)/((2x + 2"h" + 3)(2x + 3))` …[∵ h → 0, ∴h ≠ 0]
= `(-2)/((2x + 2 xx 0 + 3)(2x + 3))`
= `(-2)/(2x + 3)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: 3x2 + 4
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`