Advertisements
Advertisements
प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
उत्तर
Let y =`logx/(x^3-5)`
Differentiating w.r.t. x, we get
`dy/dx= d/dx(logx/(x^3 - 5))`
= `((x^3 - 5)d/dx(logx) - (logx)d/dx(x^3 - 5))/((x^3 - 5)^2)`
=`((x^3 - 5)(1/x) - logx(d/dx(x^3) - d/dx(5)))/((x^3 - 5)^2)`
= `((x^3 - 5)1/x - logx(3x^2 - 0))/((x^3 - 5)^2)`
= `((x^3 - 5)1/x - log x * 3x^2)/(x^3 - 5)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
The demand function of a commodity is given as P = 20 + D − D2. Find the rate at which price is changing when demand is 3.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = (1 – x) (2 – x)
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx`if y = x log x (x2 + 1)
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
If the total cost function is given by C = 5x3 + 2x2 + 1; Find the average cost and the marginal cost when x = 4.