हिंदी

Find dydxify=x3–2x2+x+1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find dydxify=x32x2+x+1

योग

उत्तर

y=x32x2+x+1
Differentiating w.r.t. x, we get

dydx=ddx(x3-2x2+x+1)

=ddx(x3)-2ddx(x2)+ddx(x)+ddx(1)

= 3x2-2(2x)+ddx(x12)+0

=3x2-4x+12x12-1

=3x2-4x+12x-12

dydx=3x2-4x+12x

shaalaa.com
Rules of Differentiation (Without Proof)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 9 Differentiation
Miscellaneous Exercise 9 | Q II. (4) | पृष्ठ १२३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.