हिंदी

Differentiate the following w.r.t.x : y = x+tanx-x3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x :

y = `sqrt(x) + tan x - x^3`

योग

उत्तर

Let y = `sqrt(x) + tan x - x^3`

∴ `("d"y)/("d"x) = "d"/("d"x) (sqrt(x) + tan x - x^3)`

= `"d"/("d"x)(sqrt(x)) + "d"/("d"x) (tanx) - "d"/("d"x)(x^3)`

= `1/(2sqrt(x)) + sec^2x - 3x^2`.

shaalaa.com
Rules of Differentiation (Without Proof)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differentiation - Exercise 9.2 [पृष्ठ १९२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 9 Differentiation
Exercise 9.2 | Q I. (2) | पृष्ठ १९२

संबंधित प्रश्न

Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`


Find the derivative of the following w. r. t. x. : `(xe^x)/(x+e^x)`


Find the derivative of the following function by the first principle: `x sqrtx`


Differentiate the following function w.r.t.x. : `x/(x + 1)`


Differentiate the following function w.r.t.x : `(x^2 + 1)/x`


Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`


Differentiate the following function w.r.t.x. : `x/log x`


Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`


If for a commodity; the price-demand relation is given as D =`("P"+ 5)/("P" - 1)`. Find the marginal demand when price is 2.


Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.


Solve the following example: If for a commodity; the demand function is given by, D = `sqrt(75 − 3"P")`. Find the marginal demand function when P = 5.


Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.


The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.


The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.


Differentiate the following function w.r.t.x. : `xsqrt x`


Find `dy/dx if y=(sqrtx+1)^2`


Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`


Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`


Find `dy/dx` if y = x2 + 2x – 1


Find `dy/dx` if y = (1 – x) (2 – x)


Find `dy/dx if y = "e"^x/logx`


Find `dy/dx`if y = x log x (x2 + 1)


Differentiate the following w.r.t.x :

y = `x^(4/3) + "e"^x - sinx`


Differentiate the following w.r.t.x :

y = `log x - "cosec"  x + 5^x - 3/(x^(3/2))`


Differentiate the following w.r.t.x :

y = `x^(7/3) + 5x^(4/5) - 5/(x^(2/5))`


Differentiate the following w.r.t.x :

y = `3 cotx - 5"e"^x + 3logx - 4/(x^(3/4))`


Select the correct answer from the given alternative:

If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×