Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `x/log x`
उत्तर
Let y =`x/log x`
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x/logx)`
= `(logxd/dx(x) - xd/dx(logx))/(logx)^2`
= `(logx(1) - x(1/x))/(logx)^2`
= `(logx-1)/(logx)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x.
`(3x^2 - 5)/(2x^3 - 4)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `"e"^x/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `2^x/logx`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of ‘t’ toy cars is given by C=5(2t)+17. Find the marginal cost and average cost at t = 3.
Solve the following example: The demand function is given as P = 175 + 9D + 25D2 . Find the revenue, average revenue, and marginal revenue when demand is 10.
Differentiate the following function w.r.t.x. : x−2
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx` if y = (1 – x) (2 – x)
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =