Advertisements
Advertisements
प्रश्न
Differentiate the following function w.r.t.x. : `2^x/logx`
उत्तर
Let y = `2^x/logx`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" (2^x/logx)`
=` (log x d/dx (2^x) - 2^x d/dx (logx))/(logx)^2`
= `(log x. 2^x . log 2 - 2^x . 1/x)/(log x)^2`
= `[2^x (log x log 2 - 1/x)]/(log x)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following function by the first principle: 3x2 + 4
Find the derivative of the following functions by the first principle: `1/(2x + 3)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `1/("e"^x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: If the total cost function is given by; C = 5x3 + 2x2 + 7; find the average cost and the marginal cost when x = 4.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
The supply S for a commodity at price P is given by S = P2 + 9P − 2. Find the marginal supply when price is 7/-.
Differentiate the followingfunctions.w.r.t.x.: `1/sqrtx`
Find `dy/dx if y = x^2 + 1/x^2`
Find `dy/dx if y=(sqrtx+1)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx if y=(1+x)/(2+x)`
Find `dy/dx if y = ((logx+1))/x`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`