Advertisements
Advertisements
प्रश्न
Find `dy/dx if y = x^2 + 1/x^2`
उत्तर
`y = x^2 + 1/x^2`
∴ y = x2 + x–2
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x^2+x^(-2))`
= `d/dx(x^2)+d/dx(x^-2)`
= 2x – 2x–3
= `2x – 2/x^3`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t.x. : `(x^2+a^2)/(x^2-a^2)`
Find the derivative of the following function by the first principle: `x sqrtx`
Differentiate the following function w.r.t.x. : `((2"e"^x - 1))/((2"e"^x + 1))`
Differentiate the following function w.r.t.x. : `((x+1)(x-1))/(("e"^x+1))`
Solve the following example: The total cost function of producing n notebooks is given by C= 1500 − 75n + 2n2 + `"n"^3/5`. Find the marginal cost at n = 10.
Solve the following example: The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y = ((logx+1))/x`
Find `dy/dx if y = "e"^x/logx`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
The supply S of electric bulbs at price P is given by S = 2P3 + 5. Find the marginal supply when the price is ₹ 5/- Interpret the result.
Differentiate the following w.r.t.x :
y = `x^(4/3) + "e"^x - sinx`
Differentiate the following w.r.t.x :
y = `log x - "cosec" x + 5^x - 3/(x^(3/2))`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(x - 4)/(sqrtx + 2)`, then `("d"y)/("d"x)`