Advertisements
Advertisements
प्रश्न
Find `dy/dx if y = x^2 + 1/x^2`
उत्तर
`y = x^2 + 1/x^2`
∴ y = x2 + x–2
Differentiating w.r.t. x, we get
`dy/dx=d/dx(x^2+x^(-2))`
= `d/dx(x^2)+d/dx(x^-2)`
= 2x – 2x–3
= `2x – 2/x^3`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following w. r. t. x. : `logx/(x^3-5)`
Find the derivative of the following w. r. t.x. : `(3e^x-2)/(3e^x+2)`
Differentiate the following function w.r.t.x. : `x/(x + 1)`
Differentiate the following function w.r.t.x. : `x/log x`
Differentiate the following function .w.r.t.x. : x5
Differentiate the following function w.r.t.x. : `xsqrt x`
Find `dy/dx if y = (sqrtx + 1/sqrtx)^2`
Find `dy/dx if y = x^3 – 2x^2 + sqrtx + 1`
Find `dy/dx` if y = x2 + 2x – 1
Find `dy/dx if y = ((logx+1))/x`
The relation between price (P) and demand (D) of a cup of Tea is given by D = `12/"P"`. Find the rate at which the demand changes when the price is Rs. 2/-. Interpret the result.
The demand (D) of biscuits at price P is given by D = `64/"P"^3`, find the marginal demand when price is Rs. 4/-.
Differentiate the following w.r.t.x :
y = `sqrt(x) + tan x - x^3`
Differentiate the following w.r.t.x :
y = `7^x + x^7 - 2/3 xsqrt(x) - logx + 7^7`
Select the correct answer from the given alternative:
If y = `(3x + 5)/(4x + 5)`, then `("d"y)/("d"x)` =